Stemucronatoside L, a Pregnane Glycoside from the Roots of Stephanotis mucronata, Inhibits Th1/Th2 Immune Responses in vitro

b Feng-	Yang Chen), Yi-Ping Ye	*), Hong-Xia	ang Sun* ^b), Xia	o-Yu Li),	እ Hong	Shi)
)		h h	A	3	,т	la)	م 182,
7 ¹⁰	310013, .	. C ^a (* [•]	: 86-(0)	571-8821 5624;	: 86-(0))571-8821	5624;
^b) C A	x	, b	.: * 20	26	8, 1	310029,	d•
(° ^{o la}	: 86-(0)57	1-8697 1091;	: 86-(0)5	571-8697 1091;	· .: •	@7.	.)
	h (,)	Store hours			in	т
	. (), h	siepnan	ious mucronaia,			•

Formula: C₅₈H₉₁NO₂₃, *M*_r: 1192.5914

. 1. Chemical structure of stemucronatoside L()

(-2, -4, -10,	24 ^ω .Τ ^ω . -γ	(n 3). A.T		in Na ±
, •		С "*	1		
		-2	-4	-10	-γ
C .		20 ± 10	2.33 ± 0.33	20 ± 1	$936\pm\!197$
C A		636 ± 15	9.13 ± 0.11	$204\pm\!18$	3366 ± 265
C A±	(0.08 µ / _)	495 ± 58)	6.35 ± 0.57^{b}	165±5)	1931 ± 216^{b}
C A±	$(0.4 \mu /)$	488 ± 51^{b}	5.92 ± 0.66^{b}	146±15)	1266 ± 127
C A±	$(2.0 \mu /)$	452 ± 41^{b}	4.83 ± 0.88^{b}	135 ± 8^{b})	1241 ± 91
C A±	(10 µ / _)	301 ± 56)	2.60 ± 0.28)	$76 \pm 15^{\circ}$)	1011 ± 63)

3. Effect of SML on Expression of Cytokines and Transcription Factor mRNAs in ConA-Stimulated Splenocytes. The Cond-Stimulated Splen

T b 3. The mRNA Expression Level of Cytokines and Transcription Factors in Mice Splenocytes Treated with Stemucronatoside L () and Con A. C A ($0 \ 10 \ \mu$ / C A (

3μ/) b T-C		-2, T ^b	-γ, -4,	$\begin{array}{c} 0 & 10 \mu \\ -10, T \\ -10, T \\ -5 \\ -7 \\ -5 \\ -5 \\ -7 \\ -5 \\ -5 \\ -5$	А	A
	· · · · · · · · ·	•	lo -	\pm (<i>n</i> 3).		11

	C	μ/				
	0	0.016	0.08	0.4	2	10
-2	0.49 ± 0.01	0.42 ± 0.02)	0.41 ± 0.02^{b})	0.30 ± 0.03)	0.28 ± 0.04)	0.09 ± 0.01)
γ	0.45 ± 0.03	0.21 ± 0.03)	0.19 ± 0.03)	0.18 ± 0.03)	0.15 ± 0.03)	0.09 ± 0.02)
Т- ^b	0.39 ± 0.03	0.33 ± 0.01)	0.33 ± 0.01)	0.33 ± 0.01)	0.27 ± 0.02^{b}	0.22 ± 0.02)
-4	0.52 ± 0.04	0.42 ± 0.04)	0.41 ± 0.01)	0.30 ± 0.01)	0.28 ± 0.01)	0.05 ± 0.01)
-10	0.39 ± 0.02	0.34 ± 0.02)	0.26 ± 0.01)	0.22 ± 0.01)	0.21 ± 0.01)	0.13 ± 0.01)
AT A-3	0.51 ± 0.07	0.38 ± 0.03)	0.37 ± 0.01)	0.37 ± 0.05)	0.37 ± 0.02)	0.27 ± 0.01^{6}
	አ	^{lo} 0 μ /	A A	$) P < 0.05, ^{b}) P < 0.05, $	(0.01, P<	0.001.

918

.2. The mRNA expression level of GAPDH, cytokines and transcription factors in mice splenocytes treated with stemucronatoside L() and ConA. $0,10 \mu / C$ A $(3 \mu /)$ 16^h.T^h A A , 2, γ , $-10, -4,T^{-b}$, ATA-3 T^{-b} , $T^$

A 10 6 ^b Zhejiang Provincial Natural Science Foundation of China (. 206439) . 2006 004) Zhejiang Provincial Medicinal Health Program of China (....

Experimental Part A_j(C A) 3-(4,5-General. C -2*H*--2-)-2 ⁷), A; RPMI 1640 b (TT) Sigma Chemical Co., Т C)-, Gibco BRL, A; In (`**`**•,•ii) C 8(C 4 (3T 4, 129.19) ()--2, b BD Biosciences Pharmingen, CA, 53-6.7) Α; (-2,) A Wuhan Boster Biological Technology., Ltd., . Trizol Invitrogen, C, CA, A; C, Shanghai Sangon Biological Engineering Technology & Services Co., Ltd., b (B) Hangzhou Sijiqing Corp., A, -10). C⁰ С . d . . C[•] 4 Extraction, Isolation, and Identification of SML. 23,,M : 1192.5914) 4 b Stephanotis mucronata 3 6,**)** b

▶ ₁₃C-5 1 ١. $,^1$ BC).T^{la}, ,¹ -C C, . b >99% ^b С

0.016, 0.08, 0.4, 2, B^{la} 0.5 Trizol ત્રે તે τb А

τb b b 15 .T^b 100 µ A 450 . 44 λλ³μ/...) RPMI 1640

ьÀ Measurement of Cytokines. 24**b** 5% C $1400 \times g = 5$ -10. **h**]. b 1.5^b (** b 26 b (ABC). A 4 b b b **_•** ... **37**° b bΤ 30 В () **3**7° 6 h b h

3% C μ b 35/0. 24- b C A (3524) 5×10⁶ 1 $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ RPMI 1640 ₩ 5% Ç 2 . . 2. 37°, **Φ** T C-. С 4 -**)** 64 . A AG h ^b CellQuest 3.0f (BD Biosciences Pharmingen, CA, A)

Preparation of Splenocytes. , Hank' B (B; Sigma), 23 . $\begin{array}{ccc} & \mathbf{k} & \mathbf{k} \\ \mathbf{k} & \mathbf{k} & (0.8\% \ (w/v)). \ \mathbf{A} \\ \mathbf{k} & \mathbf{k} & \mathbf{k} \\ \mathbf{k} & \mathbf{k} & \mathbf{k} \end{array}$ $(1500 \times g 4^{\circ})$ 10), **b** ,• м *HEPES* (* 7.1), 0.05 м 2-12 M HEILL 10% C). C . 100 / , 100 μ / b h τ , B **b b** 95%. Flow Cytometry. 📌

0.1% **AAA** b · · · · **`** le, Experimental Animals. С 18. 22 Zhejiang Experimental Animal Center (C **,** C 2003-0001, b 50±10%, 12-b C¹⁰) 6 **y** y 5 ^{له} /12 له libitum, $^{,\bullet}$. 24 ± 1°, . A. **)** b b b b Institute for Experimental Animals, la la

^{la} RPMI-1640

4

(Costar, C .

4

Received April 28, 2008