

Review

Is GPR39 the natural receptor of obestatin?

Dong Xiao-Ying^a, He Jin-Ming^a, Tang Sheng-Qiu^{a,*}, Li Hai-Yun^b, Jiang Qing-Yan^b, Zou Xiao-Ting^c

^a College of Yingdong Bioengineering, Shaoguan Universit , Da ue Avenue, Zhenjiang District, Shaoguan 512005, China ^b Laborator of Animal Ph siolog and Biochemistr , College of Animal Science, South China Agriculture Universit , Guang hou 510642, China ^c College of Animal Science, Zhejiang Universit , Hang hou 310029, China

ARTICLE INFO

Article histor : Recei ed 28 J ne 2008 Recei ed in e i_ed ♠ m 25 A g __ 2008 Acce _ed 25 Se _embe 2008 P bli_hed ♦ n line 10 Oc ♥ be 2008

Ke ords: Di_ ib r n F nc r n GPR39 Rece family S_ c_ e Obe_a_in

ABSTRACT

GPR39, an • han ece • bel nging • he family • f G • ein-c led ece • _, wa_ • iginally e • ed • be he ece • • f • be a in H* we e ecen ly, n me • _ e • _ ha e e_i * ned_hi_c * ncl_i * n. In mammal_, GPR39 wa_ e • _ed • be in • l ed in_he eg la i* n • f ga_ • in e_ inal and he me ab lic f nc * n_. In_hi_a_icle, a la_e_ and b ief e iew • n_he ece • family, _ c_ e, di_ ib_* n and hy_* * gical f nc * n_* f GPR39 ha_been e • _ed.

© 2008 El_e ie Inc. All igh__ e_e ed.

Contents

1.	In_ *d c_*n	432
2.	Rece 🖈 family 🕈 f GPR39	432
3.	S_ c_ e and di_ ib_∦ n ◆ f GPR39	434
	3.1. S_ c_ e ◆ f he GPR39 ece 🔮	434
	3.2. Di_ ib ≱ n ◆ f GPR39 ece 🔮	434
4.	Ende gene _ ligand 🖻 GPR39	435
	4.1. Obea_in	435
	4.2. Zinc ř n	436
5.	F nc # n_ * f GPR39	436
	5.1. ₱◆ d in_ake and ga_ ◆ in_e_inal ac_i i_y	436
	5.2. Inhibi 🎓 n • f cell a • 🔹 i	436

^{*} Corresponding author. Tel.: +86 751 8620272. E-mail add e__:_ n* f_ n@m_n.c* m (S.-Q. Tang).

6.	C ncl _ n	436
	Ackn vledgemen	437
	Refe ence	437

1. Introduction

The G \bullet ein- \bullet led ece \bullet 39 (GPR39) i an \bullet han membe \bullet f a family incl ding he ece \bullet f gh elin and m _ilin [30]. GPR39 he a high deg ee \bullet f \bullet n_i i e ignaling h gh he e m e \bullet n_e elemen (SRE) a hyay [20]. In 2005, GPR39 ya ____ e \bullet ed \bullet be he ece \bullet f a e _idef agmen f \bullet m he gh elin ec \bullet named be ain, which wa \bullet ed \bullet be a g h m ne ha ing he \bullet i e effec \bullet n f \bullet d in ake and GI- ac f n f n \bullet gh elin [52]. The eaf e , he GPR39 jgnaling wa ac i a ed by inc f n $(Zn^{2+})_{h} \bullet gh_{h} \in G \alpha$ -PLC $a_{h} \lor a \lor [48]$. Here e, Cha_el e_al. [8] _ gge_ed_ha_ \bullet be_a in did me_ac_i a_e GPR39; _he effer, he na_al ligand for GPR39 i_ nce_ain \bullet fa . In _hi_a_icle, $\lor e_{mma}$ i ed_here ece \bullet family, __ c_ e, di_ ib_i n and hy_f regical f nc_i n_ \bullet f GPR39.

2. Receptor family of GPR39

In 1996, he g • w h h m ne _ec e ag g e _- ece (GHS-R) gene wa_ ch ned and _h wn s enc de a ni e G • _ein-

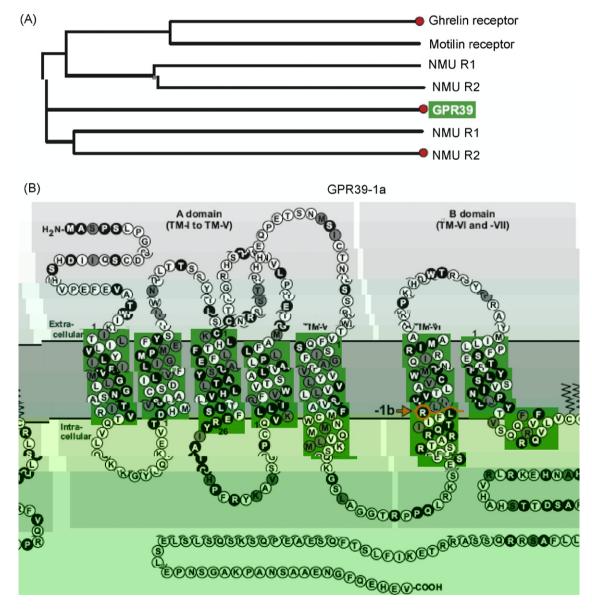


Fig. 1 – The receptor family of GPR39. (A) Schematic phylogenic tree of the receptor family of GPR39. The constitutively active receptors are highlighted with red color. (B) A model of human GPR39. GPR39-1a is the full length 7-transmenbrane (TM) receptor, and GPR39-1b is a truncated form of GPR39-1a lacking after 5-TM [12,41]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

c led ece • wih a ded ced • ein _e ence ha wa 96% iden ical in h man and a [22]. Beca _e • f he hy_i pical im • _ance • f he GHS-R, a _ea ch f family membe _ wa_ hen ini ia ed and i _ m lec la e • 1 i n wa in e_iga ed. McKee e al. • iginally indica ed ha GPR38 and GPR39_ha ed a igni can amin acid _e ence iden ical wih he GHS-R, _ w ne • medin U ece • _ and he _ w ne • _en_in ece • _ (Fig. 1A). Fl • e_cence in situ hyb idi a in dem n_ a ed ha GPR38 and GPR39 cali ed a _e a ae ch \bigstar m^{*} \bigstar me_ and ψ e e di_ inc_ f \bigstar m_he gene enc^{*} ding_he GHS-R and NT-R ψ e 1 [30].

GPR38 $\forall a_{\text{enc}} \text{ ded by a _ingle gene e } e_{\text{ed}} \text{ in _he _h} \bullet \text{ id gland, __} mach, and b ne ma \bullet \forall, and i_ i_ m \forall km \forall n_{\text{e}} \bullet \text{ be _he ece } \bullet f m \text{ _ilin, } \psi \text{ hich mainly eg la_e_ ga_} \bullet \text{ in e_inal (GI) } \bullet n_ ac_{\text{if n_and g_mt_iliy [13]. GPR39} \\ \forall a_{\text{e}} e_{\text{ed}} \text{ ed in _he b ain and } \bullet \text{ he e i he al i_e } e_{\text{[30].}} \text{ The GHS-R gene } \forall a_{\text{a}} \text{ la e indica_ed_} \bullet \text{ be _he ece } \bullet f \text{ he GI- ac_ht m ne gh elin in } \bullet \text{ led in a lage a ay } \bullet \text{ ff} \text{ ff} \text{ and } \bullet \text{ ff} \text{ ff} \text{ and } \bullet \text{ ff} \text{ ff} \text{ and } \bullet \text{ ff} \text{ ff} \text{ ff} \text{ and } \bullet \text{ ff} \text{ and } \bullet \text{ ff} \text{ f$

Fig. 2 – Alignment of amino acid sequences of human, mouse, rat, chicken, quail and pig GPR39. Transmembrane regions were represented as red letters; the gene sequences are quoted from GenBank accession (nos. NM001508, NM001114392, ENSRNOG00000021586, NM001080105, EF375709, and EU669821). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

hy_i is gical f nc, including he eg la in f f f d in ake, b dy weigh, GI m ili y and hy halamic and hy hy_eal in m ne_ec e in [18,27,33,49]. O he membe f he GPR39 ecc f amily a enc medin U ecc f and ne en_in ecc f ... Ne medin U and ne en_in b h ha e been im licated in the c n f f f d in ake and GI f nc, in [21,54].

3. Structure and distribution of GPR39

3.1. Structure of the GPR39 receptor

The GRP39 ecc • belt ng • he cla_ • f ht dt _in-like ecc • family incl ding GHS-R and mt _ilin ecc • (GPR38) [20,30]. The amint acid _e ence_ • f GPR39 in h man, a_, mt _e, ail, chicken and ig a e _ht wn in Fig. 2.

The me lec la weigh eigh fh man GPR39 i 52 kDa [14]. The h man GPR39 gene $c^n_i f_y e^n_e a_e by a e y$ la ge in 🕈 n 🕈 f a 📑 ima ely 200 kb [36]. PCR analy i_ e i ed_he n ha_GPR39 wa_e e_ed by v _ lice a ian__, namely GPR39-1a, e_ + nding + hef llleng h7-_ an_menb ane (TM) ece 💉 , and GPR39-1b, 🖈 e_ 🕈 nding 🕈 a _ nca_ed 🕈 m♦f GPR39-1a lacking af_e 5-TM (Fig. 1B) [12]. Yamam ? e_ al. [46,47] e ? _ed _he amin acid _e ence_ and gene __ c_ e_ f chicken and ail GPR39. Chicken and ail GPR39 b h ence de a 462-amine acid ◆_ein, wihhigh _e ence h m k gy * h man, a_and m _e GPR39. The _ail GPR39 cDNA c n_i_ed f 354 b f 5'-UTR, 1484 b 🕈 f 3'-UTR and 1389 b 🕈 f 🕈 ding egit n [47]. The chicken GPR39 genei_♂ m �_ed• f_v≉ e ◆ n__e a a_ed by an in_ * n, HNF-1, GC b* and CCAAT b* , b _ n* can* nical TATA 🕑 🛛 🖗 a, 🕈 nd in he chicken GPR39 gene [46]. Recen ly, 🤘 e de_e mined _he ig GPR39 cDNA enc ding a 465-amin acid •_ein (Fig. 2).120

f nc_i nal analy_i_ f he GPR39 \bullet m e ege n iden_i ed ha_ HNF-1 α , HNF-4 α , and SP1 ψ e e in \bullet l ed in he \bullet n \bullet l \bullet f GPR39 e e_i n [12].

In mice, GPR39 mRNA e e__ r n wa_de_ec_ed in_e _ mamygdala, a ie_al cell_, en_e < cy_e_, ne < n_ and anc ea_ [31], in e i he al < gan__ ch a_ he d < den m and kidney b _ m_ in_he i i a y and hy < halam _ by Q-PCR [19] and in a r _ b ain egr n_ e ce _ he hy < halam _ by in situ hyb idi a r n [24]. By RT-PCR and imm n cy < chemi_ y, Igle_ia_e_al. [23] e < _ed_ha_GPR39 mRNA wa_e e__ed in m ine ca dr my cy_e_c l ed in vitro.

In bi d_, Yamam[•], e_al. e • _ed a de_ail di_ ib _i* n • f GPR39 mRNA in chicken_, whe e a wide ange • f_i_ e_ di_ ib _i* n wa_ • b_e ed wih _he highe_ le el in _he d • den m, and m• de a_ele el_in_he li e , kidney, _• mach and • id c_. The e_e_i* n le el_ we e i* w in _he b ain i _ia_y, _hym _, b__a• ffab ici _, b* ne ma • w, • a y and _e_i_. E_e_i* n le el_ • f GPR39 mRNA we e al_* mea_ ed by Q-PCR in dige_i e and e • d c_i e_i_ e_ in 1-yea • ld GPR39 [52]. Me echa _e al. [31] and Zhang e al. [50] _ gge_ed ha • be_a in wa a he me ne ca able f binding • GPR39 • eg la e he f nc * n_ • f di e _e ga_ • in e inal and adi • _e i_ e. F he _ die indica ed ha • be_a in wa in • l ed in inhibi ing hi _ and an ie y [37], im • ing meme y [6], affec ing cell • life a * n [5,53], • n_ • lling. id he me _a i [38] and inc ea ing he _ec e * n • f anc ea ic j ice en yme_ [25]

Acknowledgements

The a h g a ef lly ackn wledge D. H. Kaiya (De a men f Br chemi, y, Na r nal Ca dr a c la Cen e Re ea ch In i e, O aka, Ja an) r hi al able c mmen r hi a e. Thank a e al e ended Mi Claie (a den dying ab ad f m Rw anda) r he al able g idance and gge r n f hi a e.

REFERENCES

- [1] A aka K, In i A, A aka a A, Ka I, F jimiya M. Obe_a in inhibi_m ac_i i y in he an m and d den m in he fed a e f c n_cr a . Am J Phy r l Ga in e_ Li e Phy r l 2008;294:G1210 8.
- [2] Bang AS, S le SG, Yandle TG, Richa d_ AM, Pembe ◆ n CJ. Cha ac_e i_a i n ◆ f ◆ gh elin e_ide_in mammalian _i_ e and la_ma. J End c in 1 2007;192:313_23.
- [3] Ba_il AK, Hagl nd Y, B ♦ wn J, R dh lm T, Hell ↑ m PM, Na l nd E, e al. Li le n abili y f f be_ain * in e ac wi h gh elin * m dify m ili y in he a ga * in e inal ac. B J Pha mac l 2007;150:58 64.
- [4] B e_ciani E, Ra e_i D, D na F, B lga elli I, Tamia * L, L ca_elli V, e_al. Obe_a in inhibi_ feeding b_d e_n*_ m* d la_e GH and c*_ic*_e * ne_ec e_* n in_he_a_J End* c in* l In e_ 2006;29:RC16_8.
- [5] Camina JP, Cam * JF, Camin* JE, Dieg e C, Ca_an e a FF. Obe_a in-media ed * life a * n* f h man e inal igmen_e i_helial cell_: eg la* y mechani_m_. J Cell Phy_* l 2007;211:1 9.
- [6] Ca lini VP, Schi^{*} h HB, Deba i^{*} gli^{*} SR. Obe__a_in im ^{*} e_ mem^{*} y e f^{*} mance and ca _e_ an i^{*} ly_ic effec_ in a_.
 Bi^{*} chem Bi^{*} hy_ Re_ C^{*} mm n 2007;352:907 12.
- [7] Ca_alan V, Of me -Amb ◆_i J, Re_ella F, Sil a C, Gil MJ, Real g e A, e al. The * be_a in ece * (GPR39) i_ e e_ed in h man adi * e i_ e and i_de wn- eg la ed in * be_i y-a_* cia_ed y e 2 diabe_e melli__. Clin Ende c in* l (O f) 2007;66:598 601.
- [8] Cha_el N, Al ea -Pe e R, Le ince J, I_ if X, Rea -Le G*a ig* A, A dim^{*} V, e_al. C*mmen_*n "Obe_ain, a e_ide enc* ded by he gh elin gene, * _e_gh elin'_ effec__*n f**d in_ake". Science 2007;315:766_9.
- [10] De Sme_ B, Thij_ T, Pee_e _ TL, De ** _e e I. Effec_ * f e i he al* be_a in*n ga_ ic em _ying and in_e_inal c*n_ ac_ili_y in * den_. Ne * ga_ * en_e * l M*_il 2007;19:211 7.
- [11] Di_me S, Sahin M, Panlen A, Sa ena A, T _ a i_D, Pina AL, e_al. The c n_i_i ely aci e han G ein c led ece c GPR39 e_ec_f f m cell dea h by inc ea ing_ec e r n f igmen_e i helial de i ed g y_h fac. PEDF. J Br l Chem 2008 [E b ahead f in_].
- [12] Ege & d KL, H L B, Pee en PS, Han en JB, M lde J, H kfel T, e al. GPR39 lice a ian e an ien egene LYPD1 e e in and eg la inning in e in e inal ac, end c ine ancea, li e and whie adi e i e i e. M l End c in 1 2007;21:1685 98.
- [13] Feighne SD, Tan CP, McKee KK, Palyha OC, H eni k DL, P ng SS, e_ al. Rece P r mr ilin iden i ed in he h man ga_ + in e_ inal y_em. Science 1999;284:2184 8.
- [14] P. n.ert. E. De en_e JE, Seidel ER. Obe_a in and gh elin in • be_e and in egnan. w men. Pe_ide_2007;28:1937_44.

- [15] G ce + l G, Millir n M, Adel + n DW, Wang Y, Wang L, Ri ie J, e_ al. Lack + f in_e ac_ir n be_yeen e i he al injec_ir n + f CCK and + be__a in in_he eg la ir n + f ga__ ic _a.ie_y _ignaling in + den__ Pe_ide_ 2006;27:2811 9.
- [16] G een BD, I vin N, Fla_ PR. Di ec_ and indi ec_ effec_ f
 be_ain e_ide_ n f
 din_ake and he eg la r n f
 gl c e h me _a_i and in_ lin_ec e r n in mice.
 Pe_ide_ 2007;28(5):981 7.
- [17] G ◆ ZF, Ren AJ, Zheng X, Qin YW, Cheng F, Zhang J, e al. Diffe en_e_ ↑ n_e_ ↑ f ci c la ing gh elin, ↑ be_a in le el_ ↑ fa_ing, e-feeding and diffe en_f ↑ d c m ◆_i f n_, and hei f cal e e_f n_in a_. Pe_ide_ 2008;29: 1247. 54.
- [18] Haya_hida T, M akami K, M gi K, Ni_hiha a M, Naka a. M, M ndal M, e_ al. Gh elin in d me_ic animal_:di_ ib in n in _ mach and i_ __ible ◆ le. D me_ Anim End c in l 2001;21:17, 24.
- [19] H* 1_ B, Ege & d KL, Schild E, Vicke SP, Chee_ham S, Ge lach LO, e_ al. GPR39_ignaling i__im la_ed by_ inc * n_ b_ n*_ by * be_a in. End* c in* * gy 2007;148:13, 20.
- [20] H. L. B, H. Iliday ND, Bach A, Elling CE, C. HM, Schwa TW. C. mm, n. c. al bai. f. c. n.i. i e ac. i ju f. he gh elin ece family. J Br I Chem 2004;279: 53806 17.
- [21] H^{*} va d AD, Wang R, P^{*} ng SS, Mellin TN, S_{_} ack A, G an XM, e_{_} al. Iden_i ca.^{*} n f ece <u>•</u> <u>↑</u> ne medin U and i_{_} le in feeding. Na_ e 2000;406:70 4.
- [22] H^{*} va d AD, Feighne SD, C lly DF, A ena JP, Libe a. PA, R^{*} _enbl m CI, e. al. A ece . in i i a y and hy . halam __ha_f nc. r n_ in g . v. h h^{*} m^{*} ne elea_e. Science 1996;273:974 7.
- [23] Igle_ia_MJ, Salgad A, Pinei A, R dim BK, O_e MF, G ig ian L, e al. Lack f effec f he gh elin gene-de i ed e _ide be_a in n ca di my cy_e iabili y and me_ab li_m. J End c im l In e_ 2007;30:470 6.
- [24] Jack 🕈 n VR, N hacke HP, Ci elli O. GPR39 ece 🕈
- e e__r n in_he m e b ain. Ne e _ 2006;17:813 6. [25] Ka ica M, Zabiel_ka M, P r r I, Jank γ_ka A, Ka • I,
- K waha a A, e_al. Obe_a_in __im la e__he_ec e in f anc ea_icj ice en yme__h f gh a agal a hway in anae_he_i ed a_- elimina y e_ l_.JPhy_i Pha mac l 2007;58(S l. 3):123 30.
- [26] K* bel_P, Wi_e AS, S_engel A, G* ebel M, Banne N, G* ce*lG, e_al. Pe i he al*be_a_in ha_n* effec_*n feeding beha i* and b ain P*_e e_i*n in *den_. Pe_ide_2008;29:1018 27.
- [27] K[•] jima M, H[•] da H, Da e Y, Naka a[•] M, Ma + H, Kanga a K. Gh elin i a g[•] a h-h[•] m[•] ne- elea ing acyla ed e_ide f[•] m * mach. Na e 1999;402: 656 60.
- [28] Laga d GJ, Y ng A, Acena A. Obe_a in ed ce_ f ◆ d in ake and _ e_e_ b dy y eigh gain in ◆ den_. Bit chem Bit hy_ Re_ C mm n 2007;357:264 9.
- [29] La vye _ E, Land y _ B, A cken _ L, Sch* f _ L, L y en W. Obe_a in d* e _ n*_ ac_i a e* han G * _ein-c* led ece _* GPR39. Bi* chem Bi* hy _ Re _ C* mm n 2006;351:21 5.
- [30] McKee KK, Tan CP, Palyha OC, Li J, Feighne SD, H eni k DL, e_ al. Cl* ning and cha ac_e i a_i*n*f_v* h man G *_ein-c* led ece * gene_ (GPR38 and GPR39) ela_ed *_he g*v_h h* m*ne_ece_ag*g e and ne *_en_in ece *__. Gen*mic_ 1997;46:426 34.
- [31] M* echa _ D, De ** _e e I, M* ea B, de Sme_B, G* i_I, H*_ken_L, e_al. Al_e ed ga_ *in_e_inal and me_ab* lic f nc_i*n in_he GPR39* be_a in ece _* -km* ck* _m* _e. Ga_ * en_e * i* gy 2006;131:1131 41.
- [32] M^endal MS, T[●]_hinai K, Uen[●] H, K[●]_hinaka K, Naka a.[●] M. Cha ac_e i a.^{*} n.[●] f.[●] be_ain in a and h man_.[●] mach

and la_ma, and i_lack f ac _e effec_ n feeding beha it in t den_. J End c int 2008;198:339.46.

- [33] Naka a M, M akami N, Da e Y, K^{*} jima K, Ma + H, Kanga aK. e al. A ◆ le f gh elin in he cen al eg la r n ◆ f feeding. Na e 2001;409:194 8.
- [34] N* g ei a R, P.¹ ge P, T* a S, A m* ld M, Mi_chell S, M* i_ A, Pe e -Til e D, e_ al. Effec__ * f * be__a in * n ene gy balance and g * y_h h* m* ne _ec e_* n in * den__. End* c in* * gy 2007;148:21 6.
- [35] N*g eia_R, T* a S, Mi_chell SE, Rayne DV, A che ZA, Dieg e C, e_al. Reg la r*n*fg*y_h h* m*ne _ec e_ag*g e ece * gene e e__r*n in he a c a e n clei*f_he a_by le _in and gh elin. Diabe_e_ 2004;53:2552 8.
- [36] N^{*}g ei a_R, T_ch^{*} M. Se a a i^{*}n ^{*} f c^{*}n^{*} ined h^{*} m^{*} ne_ yield_a e_i e i al_. Science 2005;310:985 6.
- [37] Sam_n WK, Whi e MM, P ice C, Fe g n AV. Obe_a in ac_ in b ain inhibi_hi __. Am J Phy_r l Reg l In_eg C m Phy_r l 2007;292:R637_43.
- [38] Sam_*n WK, Y*_en GL, Chang JK, Fe g _*n. Obe_a in inhibi_ a.* e_in_ec e.*n:e idence f* a hy_* r gical ac.*n in_he c*n.*l*f.¹ id h* me*_a_i_ J End*c in* l 2008;196:559_64.
- [39] Se ane LM, Al Ma_adi O, Pa ◆ Y, Pag ◆ U, Ca_an e a FF. Cen_al ◆ be_a in admini_ a r n d e r m m dify ei he _ ◆ n ane _ ◆ gh elin-ind ced f ◆ d in ake in a_J End c in * l In e_ 2006;29:RC13 5.
- [40] Sibilia V, B e_ciani E, La_ ada N, Ra e_i D, L ca elli V, De L ca V, e_al. In_ace eb en_ic la ac_e and ch enic admini_ a.r n ef ebe_a in minimally affec_ f e d in ake b_ n eigh_gain in he a_J Endec in l In e_ 2006;29:RC31_4.
- [42] S. ★ J* hann L, H* L_ B, Sch a _ TW. M* lec la mechani_m + f Zn(2+) ag* ni_m in _he e _ acell la d* main * f GPR39. FEBS Le_ 2008;582:2583 8.
- [43] T emblay F, Pe ea L M, Klaman LD, T bin JF, Smi h E, Gimen RE. N mal f d in_ake and b dy yeigh in mice lacking he G ein-c led ece GPR39. End c in r r gy 2007;148:501 6.
- [44] Unnia an S, S eck M, Kieffe TJ. Me_ab*lic effec_ + f ch + nic + be_a in inf _i*n in a_. Pe_ide_ 2008;29:1354 61.

- [45] Yamam^{*} ◆ D, Ike_hia N, Dai ◆ R, He ning ya_ EH, T ◆ da K, Takaha_hi K, e_ al. Nei he in_ a en * _ n in_ ace eb ◆ en-_ ic la admini_ a * n ◆ f ◆ be_a in affec__ he_ec e * n ◆ f GH, PRL, TSH and ACTH in a_. Reg l Pe_ 2007;138:141 4.
- [46] Yamam Y. I, N. mar M, Sakag chi Y, T_ _hima N, Tanaka M. Melec la cha ac_e i a r n f_e ence and e e_r n f chicken GPR39. Gen C m. End c in l 2007;151:128.34.
- [47] Yamam^{*} I, Sakag chi Y, N ma^{*} M, T_ kada A, T_ hima N, Tanaka M. P ima y _ c_ e and i_ e di_ ib * n * f GPR39 me_enge ib* n cleic acid in Ja ane_e ail, Coturni japonica. P* 1 Sci 2007;86:2472 6.
- [48] Ya_ da S, Miya aki T, M nechika K, Yama_hi a M, Ikeda Y, Kami ◆ n A. I_• la_* n • f Zn²⁺ a_ an end gent _ ag ni_ • f GPR39 f • m fe_al b ine_e m. J Rece _ Signal T an_d c_ Re_ 2007;27:235_46.
- [49] Y*_hiha a F, K* jima M, H*_* da H, Naka a.* M, Kanga va K. Gh elin: a n* el e _ide f* g* v_h h* m* ne elea_eand feeding eg la_* n. C O in Clin N _ Me_ab Ca e 2002;5:391 5.
- [50] Zhang JV, Jah H, L ◆ CW, Klein C, Van K*len K, Ve D*nck L, e al. Obe_a in ind c i* n*f ea ly- e *n_e gene e e_i* n in ga_*in_e_inal and adi *_e i_e and he media* y *le*f G *_ein-c*led ece *, GPR39. M*l End*c in*l 2008;22:1464 75.
- [51] Zhang JV, Klein C, Ren PG, Ka_ S, D* nck LV, M* echa _ D, e_al. Re_ * n_e * c* mmen_* n Obe_a_in, a e_ide enc* ded by he gh elin gene* *_e_gh elin'_ effec__* n f* d in_ake. Science 2007;315:766.
- [52] Zhang JV, Ren PG, A _ian-K e_chme O, L ◆ CW, Ra ch R, Klein C, e_ al. A e_ide enc⁴ ded by _he gh elin gene,
 ◆ _e_ gh elin'_ effec__ ◆ n f⁴ ◆ d in_ake. Science 2005;310:996 9.
- [53] Zhang Z, Z* DJ, Chen Y, Wang M, W J, G * ZF. Obe_a in inhibi_ * life a * n and diffe en ia * n * f 3T3-L1 eadi * cy_e_. Acad J Sec* nd Mil Med Uni 2007;28: 929 32.
- [54] Zha D, P h laki C. Effec_ f NT n ga_ in e_inal m ili j and _ec e r n, and t le in in e_inal in amma r n. Pe_ide_ 2006;27:2434 44.
- [55] Zi. a i P, L^e ngcham _ R, E elba m J, Bl e_-Paj^{*} _ MT. Obe_a_in a_ially affec_ gh elin _ im la ^{*} n [•] f f^{*} [•] d in_ake and GH _ec e_i^{*} n in [•] den_. End^{*} c in^{*} ^{*} gy 2007;148:1648 53.